

中国科学院高能物理研究所 Institute of High Energy Physics, CAS



环形正负电子对撞机 Circular Electron-Positron Collider

# **CEPC Detector Superconducting Magnet** Conceptual Design

**Speaker:** Zongtai Xie, IHEP Represent for the Superconducting Magnet team

HKUST, 23th Jan. 2019

### Contents

- Introduction
- Magnetic Field Design
- Superconducting Coil Design & Progress of Rutherford Cable
- Progress of Cryogenic System
- Alternative Designs: Dual Solenoid & HTS
- Research towards TDR
- A Reference Design of Iron Yoke

### Introduction

#### **Design Philosophy:**

The CEPC detector magnet follows the same design concepts of the BESIII magnet, as well as CMS and ILD.

#### **Baseline Design:**

LTS superconducting solenoid and iron yokes outside, based on self-supporting conductor.



### **Introduction: Parameters**

### Magnetic field:

3 Tesla at the interaction point

#### **Room Temperature Bore size:**

6.8 m in diameter, 8.3 m in length

Larger size, Higher field (compared to BESIII)

|                                    | CMS          | CLIC-ILD | ILD          | CEPC         |
|------------------------------------|--------------|----------|--------------|--------------|
| Central field(T)                   | 4            | 4.0      | 4.0          | 3            |
| Max. field(T)                      | 4.6          |          | 4.77         | 3.5          |
| Coil inner diameter (mm)           | 6360         | 7202     | 7220         | 7200         |
| Coil outer diameter (mm)           | 6980         | 7888     | 7940         | 7656         |
| Coil length (mm)                   | 12400        | 7890     | 7350         | 7445         |
| Superconductor<br>length(Km)       | 45.4         |          |              | 30.1         |
| Dimension of<br>Superconductor(mm) | 22×64        |          |              | 22×56        |
| Layers                             | 4            |          | 4            | 4            |
| Total turns                        | 2168         |          | 1260         | 1288         |
| Stored energy(GJ)                  | 2.69         |          | 2.27         | 1.3          |
| Inductance(H)                      | 14.2         |          | 9.26         | 10.5         |
| Nominal current(A)                 | 19200        |          | 22500        | 15779        |
| Cold mass weight(t)                | 220          | 210      | 168          | 120          |
| Yoke weight                        | 12000        | 8900     | 13400        | 10000        |
| Cooling Method                     | Thermosiphon |          | Thermosiphon | Thermosiphon |



### **Magnetic Field Design**

#### Magnetic field design of 3 T.

Compared with the design of 3.5T, the dimension is the same; The current decreases from 18,575 A (3.5T) to 15,921 A

#### **5 Modules each 4 Layers**

Operating in the same current

| Central magnetic field   | 3 T     |
|--------------------------|---------|
| <b>Operating current</b> | 15921 A |
| Stored energy            | 0.66 GJ |
| Inductance               | 10.46 H |



2D Magnetic field distribution(unit: T)

### **Magnetic Field Design**

### Stray field distribution:

Compared to 3.5 T, base on the same yoke.

| St     | ray field   | 3.5 T  | 3 T    |
|--------|-------------|--------|--------|
| 50 Cc  | R direction | 14.8 m | 13.6 m |
| 20 GS  | Z direction | 17.2 m | 15.8 m |
| 100 Gc | R direction | 11 m   | 10 m   |
| 100 GS | Z direction | 13 m   | 11.6 m |
|        | 50Gs        |        | 100Gs  |

Stray field distribution outside the magnet (the field is given in T)

**The non uniformity of Tracking Volume** (diameter 3.62m,length 4.7m) **is 9.2%** 

$$B_p = \frac{B_{max} - B_{min}}{B_{center}} = 9.2\%$$
Central field non uniformity
3.5 T 10.1%
3 T 9.2%



The magnetic field distribution of TV

### **Superconducting Coil Design**

#### **Structure:**

Self-supporting winding turn with Aluminum alloy reinforcement





Structure of BESIII(1 T, length 4 m Bore diameter 2.7 m) SC Solenoid

### **Progress of Rutherford Cable**

### **Fabrication:**

The CMS conductor is fabricated by ebeam welding aluminum alloy to the coextruded high purity Al/superconducting cable insert, whereas the CEPC conductor is fabricated by coextrusion of all components.









5T, 5 layer

Sample Size for Processing Exploration

### **Progress of Rutherford Cable**











Number of strands : 32 Strand diameter : 1.2mm Materiel :Nb/Ti Tangle: 17.32 Length: >100m RRR: >100 Complete time:2016.5

Number of strands: 20 Strand diameter: 1.0mm Materiel: Copper Complete time:2015.5

Number of strands : 17 Strand diameter : 0.727mm Materiel :Nb/Ti Complete time:2015.7

Number of strands : 24 mm Strand diameter : 0.727mm Materiel :Nb/Ti Complete time:2015.8

Number of strands : 18 Strand diameter : 1.2mm Materiel :Nb/Ti Complete time:2016.2



**2016.1** Hollow aluminum alloy



2016.2 Aluminum alloy + copper cable



2016.5~6: Aluminum alloy + copper cable



2016.8: Aluminum alloy + copper cable





### **Progress of Rutherford Cable**



Sample of 10 m cable



Sample for testing shear strength



Test of shear strength

| No. | Length of Tested sample (mm) | Load (kN) | Shear strength<br>(MPa) | Length of cable |
|-----|------------------------------|-----------|-------------------------|-----------------|
| 1   | 10                           | 8.03      | 35.94                   | 1.5 m           |
| 2   | 10                           | 8.72      | 39.00                   | 1.5 m           |
| 3   | 10                           | 8.87      | 39.70                   | 1.5 m           |
| 4   | 10                           | 7.88      | 35.27                   | 1.5 m           |
| 5   | 10                           | 10.15     | 45.43                   | 1.5 m           |
| 6   | 10                           | 10.03     | 44.90                   | 1.5 m           |

| No | Length of Tested<br>sample (mm) | load(kN) | Shear<br>strength(MPa) | Length of cable |
|----|---------------------------------|----------|------------------------|-----------------|
| 1  | 10                              | 5.60     | 25.07                  | 10 m            |
| 2  | 10                              | 2.50     | 11.19                  | 10 m            |
| 3  | 10                              | 4.26     | 19.07                  | 10 m            |
| 4  | 10                              | 5.18     | 23.19                  | 10 m            |
| 5  | 10                              | 6.31     | 28.25                  | 10 m            |
| 6  | 10                              | 3.28     | 14.68                  | 10 m            |

### **Progress of Cryogenic System**

#### **Thermosiphon Loop:**

The coils are cooled by conductive method.

A thermosiphon principle experiment platform was built based on G-M cryocooler.

#### **Principle:**

Density difference of Liquid Helium & Two-phase Helium

### **Benefits:**

Phase separator operates as an additional buffer. Provide safety protection up to several hours when external cryogenic system failure occurs.



### **Progress of Cryogenic System**

| NO. | Time       | cause of guench                | Quench current |
|-----|------------|--------------------------------|----------------|
| 1   | 2008.7.29  | SCQ's quench                   | 3034A(0.9T)    |
| 2   | 2008.8.18  | SCQ's quench                   | 3369A(1.0T)    |
| 3   | 2008.9.23  | Current ramping down too fast  | 3190A          |
| 4   | 2008.12.18 | SCQ's quench                   | 3369A          |
| 5   | 2009.2.26  | Unknown                        | 3369A          |
| 6   | 2009.3.7   | Unknown                        | 3369A          |
| 7   | 2009.3.27  | Power grid fault               | 3369A          |
| 8   | 2009.4.25  | Unknown                        | 3369A          |
| 9   | 2009.5.7   | Cryogenic system failure       | 3369A          |
| 10  | 2009.5.31  | Cryogenic system failure       | 3369A          |
| 11  | 2009.12.25 | Cryogenic system failure       | 3369A          |
| 12  | 2010.1.13  | Vacuum system failure          | 3369A          |
| 13  | 2010.11.16 | SCQ's quench                   | 3369A          |
| 14  | 2011.1.13  | Cryogenic system failure       | 3369A          |
| 15  | 2011.1.17  | Cryogenic system failure       | 3369A          |
| 16  | 2011.5.10  | Cryogenic system failure       | 3369A          |
| 17  | 2011.5.26  | Cryogenic system failure       | 3369A          |
| 18  | 2011.6.1   | Cryogenic system failure       | 3369A          |
| 19  | 2012.1.29  | Cryogenic system failure       | 3369A          |
| 20  | 2012.2.3   | Cryogenic system failure       | 3369A          |
| 21  | 2012.2.14  | SCQ's quench                   | 3369A          |
| 22  | 2012.3.23  | Power grid fault               | 3369A          |
| 23  | 2012.11.15 | Power grid fault               | 3369A          |
| 24  | 2013.2.10  | Cryogenic system failure       | 3369A          |
| 25  | 2014.03.12 | Cryogenic system failure       | 3369A          |
| 26  | 2014.05.26 | Quench detector misoperation   | 3369A          |
| 27  | 2015.02.20 | Cryogenic system failure       | 3369A          |
| 28  | 2015.05.18 | Power network problem          | 3369A          |
| 29  | 2015.12.30 | Quench detector misoperation   | 3200A          |
| 30  | 2016.01.17 | Cryogenic system failure       | 3369A          |
| 31  | 2016.02.9  | Cryogenic system failure       | 3369A          |
| 32  | 2017.04.13 | Power Fluctuation              | 3369A          |
| 33  | 2017.05.07 | Cryogenic system failure       | 3369A          |
| 34  | 2017.11.28 | Cryogenic system failure       | 3369A          |
| 35  | 2018.03.05 | Cryogenic system failure 3369A |                |
| 36  | 2018.05.26 | SCQ's quench                   | 3369A          |
| 37  | 2018.05.28 | Cryogenic system failure       | 3369A          |

#### **Benefits**

Quenches of BESIII detector magnet @BEPCII collider (Twophase Helium Forced-flow Cryogenics) : in the past 10 years

#### Total 37 quenches

- 19 cryogenic system failure
- 5 electricity power failure
- 6 caused by SCQ magnet quench
- 2 quench detector failure
- 1 vacuum failure
- 1 operation error
- 3 unknown(during ramping up/down)

### **Progress of Cryogenic System**

## A thermosiphon principle experiment platform based on G-M cryocooler:

Building a two-phase natural circuit loop, helium was used as the working fluid

Investigate the heat and mass transfer characteristics experimentally

Obtain temperature profile with heat flux and critical heat flux(CHF)

| <b>P(W/m<sup>2</sup>)</b> | 51.3 | 76.5 | 125.1 | 247.0 |
|---------------------------|------|------|-------|-------|
| T1(K)                     | 3.62 | 3.87 | 4.21  | 5.19  |
| T2(K)                     | 3.68 | 3.94 | 4.33  | 5.42  |
| Т3(К)                     | 3.66 | 3.98 | 4.37  | 5.38  |





### **Alternative Designs: Dual Solenoids**

#### **Based on FCC Dual Solenoid:**

Two series connected superconducting solenoids carrying the opposite direction current

#### **Benefits:**

Light-weight and cost saving without iron yoke









### **Alternative Designs: HTS**



**Possibility Research** including conductor of High Temperature Superconductor (HTS) solenoid @20K for IDEA (International Detector for Electron- Positron Accelerator) detector.

#### YBCO:

Yttrium Barium Copper Oxide, YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>, Tc=92 K, Multi-layers Strong angle dependence (non-Isotropic) versus magnetic field High Ic compared with LTS (Nb-Ti & Nb<sub>3</sub>Sn)

### YBCO 3S (Square-Soldered-Stack) Conductor:

Basic Component of complex superconducting cable Directly used on current lead & solenoid

#### **Producing Processing:**

Vacuum Soldering to reduce the non-metal oxide between layers



40 YBCO tapes



20 YBCO tapes in each helical groove (Total 60 tapes)

TSTC HTS Cable (MIT)



CORC HTS Cable (CERN)



5 Layers YBCO 3S Conductor Vacuum Soldering by Sn63Pb37

### **Alternative Designs: HTS**

### **Experiment of 3S Conductor:**

Ic strongly associated with self-field environment Vertical S.F. 523Gs @ 400A Lower n-value increased stability of conductor **Thermal Conductivity of 3S Conductor:** 

Associated with thickness of Cu protection layer

### **DPC Solenoid Fabrication Method:**

Different electrical & stability characteristics between

- Non -Insulation Methods
- Kapton /Resin –Insulation Methods
- Stainless Steel –Insulation Methods



Test of HTS Conductor







Vertical S.F. of Conductor

Parallel S.F. of Conductor

### **Research towards TDR**

### **Multi-layers LTS Solenoid:**

1 m in diameter & 1 m in length sized superconducting magnet under engineering design and construction.

Will be applied on **EMuS** (Experimental Muon Source) of **CSNS** (China Spallation Neutron Source)

### Adopting:

- Multi-layers LTS coil design
- Rutherford cable coextruded with Aluminum stabilizer
- Thermosiphon cryogenics system

### **Developing:**

- Multi-layers coil winding processing
- LTS Rutherford cable producing processing
- Thermal design of magnets operating in high radiation environment



Structure of Multi-layers Solenoid applied on EMuS of CSNS





Magnetic Field & Thermal Design

### A Reference Design of Iron Yoke

#### **Reduce the Weight of Iron Yoke:**

Taking reference of the CMS stray field distribution. We designed a reference Yoke design. This reference Yoke design reduces the thickness and total weight by 70% and 85% w.r.t the original design.

|                                       | CMS   | CEPC<br>original | CEPC 3<br>layers<br>yoke | Smaller<br>coil & 3<br>layer yoke | Smaller<br>coil & 1<br>layer yoke |
|---------------------------------------|-------|------------------|--------------------------|-----------------------------------|-----------------------------------|
| Central field (T)                     | 4     | 3                | 3                        | 3                                 | 3                                 |
| Inner diameter<br>of coil (mm)        | 6360  | 7200             | 7200                     | 6800                              | 6800                              |
| Length of coil<br>(mm)                | 12480 | 7606             | 7606                     | 7238                              | 7238                              |
| Barrel yoke<br>inner diameter<br>(mm) | 9180  | 8800             | 9000                     | 9000                              | 8400                              |
| Barrel yoke<br>outer diameter<br>(mm) | 14000 | 14480            | 12200                    | 12200                             | 9600                              |
| Total length of<br>yoke (mm)          | 20040 | 13966            | 11600                    | 11600                             | 9200                              |
| Weight of<br>barrel yoke (t)          | 6000  | 5940             | 1608                     | 1560                              | 1125                              |
| Weight of each<br>end cap (t)         | 2000  | 3316.6           | 678                      | 657                               | 401                               |
| Total weight of<br>yoke (t)           | 10000 | 12573            | 2874.5                   | 2874.5                            | 1927                              |



### A Reference Design of Iron Yoke

### Stray Field:

The original design of detector magnet has a very thick yoke. New optimized design will take a lot of benefits, not only the magnet itself, but also the entire engineering project.

The stray field is still in line with requirements.

### **Other Equipments:**

The booster tunnel located 25m from the central line.

Cryogenic pumps.



Other references

| Stray  | field       | CMS    | CEPC<br>original | CEPC coil<br>smaller& 3<br>layers yoke | CEPC coil<br>smaller& 1<br>layers yoke |
|--------|-------------|--------|------------------|----------------------------------------|----------------------------------------|
| 50 Cc  | R direction | 25.2 m | 13.6 m           | 23.4 m                                 | 24.4m                                  |
| 30 GS  | Z direction | 32 m   | 15.8 m           | 28.6 m                                 | 30.4 m                                 |
| 100 Cc | R direction | 19.2 m | 10 m             | 18.4 m                                 | 19.2 m                                 |
| 100 GS | Z direction | 25.2 m | 11.6 m           | 22.7 m                                 | 24.2 m                                 |

| Stray      | field       | BES III | BELLE II |
|------------|-------------|---------|----------|
| 50 Cc      | R direction | 4.2 m   | 6.65 m   |
| 20 GS      | Z direction | 4.4 m   | 8.35 m   |
| 100 Cc     | R direction |         | 5.3 m    |
| 100 GS     | Z direction |         | 6.35 m   |
| Coil Inner | Diameter    | 1.49m   | 4.4m     |
| Coil L     | ength       | 3.5m    | 3.6m     |



中国科学院高能物理研究所 Institute of High Energy Physics, CAS



### **Baseline Design (CDR) :**

**Brief Summary:** 

Meet the physics requirements

#### **Preliminary Research on:**

Thermosiphon Cryogenic System; HTS Squared-Soldered-Stacked Cable; HTS Non-Insulation Solenoid

### **Reasearch Towards TDR :**

Developing Key Tech: LTS Rutherford Cable (stabilizer); Multi-layer Coil Fabrication & Insulation Processing

### **Optimizing the Yoke Structure :**

Meet the requirements of Cryogenics, Booster Ring, etc.

**CEPC Detector Superconducting Magnet** 

---Conceptual Design

**Speaker:** Zongtai Xie, IHEP Represent for the Superconducting Magnet team HKUST, 23th Jan. 2019

### **Thanks for your attentions**



中国科学院高能物理研究所 Institute of High Energy Physics, CAS





**CEPC Detector Superconducting Magnet** 

—Conceptual Design

**Speaker:** Zongtai Xie, IHEP Represent for the Superconducting Magnet team HKUST, 23th Jan. 2019